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Abstract

We present an immersed interface method for the incompressible Navier–Stokes equations capable of handling both
rigid and flexible boundaries. The immersed boundaries are represented by a number of Lagrangian control points. In
order to ensure that the no-slip condition on the rigid boundary is satisfied, singular forces are applied on the fluid.
The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are inter-
polated using cubic splines. The strength of the singular forces at the rigid boundary is determined by solving a small sys-
tem of equations at each timestep. For flexible boundaries, the forces that the boundary exerts on the fluid are computed
from the constitutive relation of the flexible boundary and are applied to the fluid through the jump conditions. The posi-
tion of the flexible boundary is updated implicitly using a quasi-Newton method (BFGS) within each timestep. The
Navier–Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method
for pressure and velocity and the overall scheme is second order accurate.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we present a numerical method for solving viscous, incompressible flow problems involving
both moving interfaces and rigid boundaries. One of the challenges in these problems is that the fluid motion,
the flexible interface motion and the interaction with the immersed rigid boundaries must be computed simul-
taneously. This is necessary in order to account for the complex interaction between the fluid and the immersed
boundaries. An example of interface problems that we consider is shown in Fig. 1. In a 2-dimensional bounded
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Fig. 1. A typical domain in which the Navier–Stokes equations are solved. The flexible interface and the rigid boundary are immersed in a
uniform Cartesian grid.
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domain X that contains a material interface C(t), we consider the incompressible Navier–Stokes equations,
written as
qðut þ ðu � rÞuÞ þ rp ¼ lDuþ F; ð1Þ
r � u ¼ 0 ð2Þ
with boundary conditions
ujoX ¼ ub; ð3Þ

where u is the fluid velocity, p is the pressure, q is the density, and l the viscosity of the fluid. Throughout this
paper, we assume that the fluid density q and the viscosity l are constant over the whole domain. The effect of
the material interface C(t) immersed in the fluid results in a singular force F which has the form
Fðx; tÞ ¼
Z

CðtÞ
f ðs; tÞdðx� Xðs; tÞÞds; ð4Þ
where X(s, t) is the arc-length parametrization of C(t), s is the arc-length, x = (x,y) is spatial position, and
f(s, t) is the force strength. Here, d(x) is the two-dimensional Dirac function. The motion of the interfaces
satisfies
o

ot
Xðs; tÞ ¼ uðX ; tÞ ¼

Z
X

uðx; tÞdðx� Xðs; tÞÞdx: ð5Þ
In our proposed numerical method, the Navier–Stokes equations are discretized using a standard finite dif-
ference method on a staggered Cartesian grid. Methods utilizing a Cartesian grid for solving interface prob-
lems or problems with complex geometry have become popular in recent years. Existing Cartesian grid
methods for interface problems can be categorized into two general groups: methods that determine the jump
conditions across the interface and incorporate them into the finite difference scheme and methods that
smooth out the singular force before it is applied to the fluid. Our method which is based on the immersed
interface method originally proposed by LeVeque and Li [20,21] falls into the first group. The immersed
boundary method introduced by Peskin [26] belongs to the second group.

Peskin’s immersed boundary method has proven to be a very useful method for modelling fluid-structure
interaction involving large geometry variations. This method has been applied to many biological problems
involving flexible boundaries [10,11,25,34]. In the immersed boundary method, the force densities are com-
puted at the control points which are used to represent the boundaries. The force densities are then spread
to the Cartesian grid points by a discrete representation of the delta function. The Navier–Stokes equations
with the forcing terms are then solved for pressure and velocity at the Cartesian grid points. Further details on
the immersed boundary method can be found in [26] and the references therein. The immersed boundary
method has several attractive features: the method is simple to implement, it can handle complex geometries
easily and it uses standard regular Cartesian grid Navier–Stokes solvers. However, since the immersed
boundary method uses the discrete delta function approach, it smears out sharp interface to a thickness of
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order of the meshwidth and it is only about first-order accurate for general problems. The immersed boundary
method has also been applied to problems with rigid boundaries [15,31]. In order to deal with rigid bound-
aries, Lai and Peskin [15] evaluated the force density using a particular case of the feedback forcing formula-
tion proposed by Goldstein et al. [13] so as to ensure that the boundary points will stay close to the required
boundary position. An alternative model to compute the force density f was proposed in [31] based on the use
of the momentum Eq. (1) at the boundaries. These forcing formulations are simple to implement but require a
small timestep to maintain the stability.

In contrast, the immersed interface method (IIM) can avoid smearing sharp interfaces and maintains sec-
ond-order accuracy by incorporating the known jumps into the finite difference scheme near the interface. The
singular force f along the immersed boundaries results in solution to the Navier–Stokes equations which may
be non-smooth across the interface, i.e., there may be jumps in pressure and in the derivatives of both pressure
and velocity at the interface. An essential ingredient of the immersed interface method is the relation between
the jumps in the solutions and their derivatives, and the applied singular forces. The basic idea of the immersed
interface method is to discretize the Navier–Stokes equations on a uniform Cartesian grid and to account for
the singular forces by explicitly incorporating the jumps in the solutions and their derivatives into the differ-
ence equations. The IIM was originally proposed by LeVeque and Li [20] for solving elliptic equations, and
later extended to Stokes flow with elastic boundaries or surface tension [21]. The method was developed fur-
ther for the Navier–Stokes equations in [17,19,22] for problems with flexible boundaries. In [22], the level set
method is used to represent the interface. This has the advantage of simplifying the algorithm but does not
appear to be adequate to represent certain types of interfaces such as elastic membranes. In [19], the interface
is tracked explicitly in a Lagrangian manner, the singular force f is split into components tangential and nor-
mal to the interface. The normal component is then incorporated into jump conditions for pressure across the
interface. The tangential component is spread to the nearby Cartesian grid points using the discrete delta func-
tion as in the immersed boundary method [26]. Spreading the tangential force to the nearby Cartesian grid
points has the effect of smoothing out the jumps in the derivatives of pressure and velocity. The IIM was also
used in [7,23,29] for solving the two-dimensional streamfunction-vorticity equations on irregular domains.

In the present work, we introduce a formulation of the immersed interface method for solving the incom-
pressible Navier–Stokes equations in the presence of rigid boundaries. Our approach is largely based on that
described in Le et al. [18]. In addition, we also combine this algorithm with our earlier work for problems with
flexible boundaries [17] to handle rigid and flexible boundaries simultaneously. It may be noted that most of the
current Cartesian grid methods can only handle flexible boundaries and the rigid boundaries are usually
required to be aligned with the computational grid [2,28]. This is contrasted to our proposed method where arbi-
trary piecewise smooth rigid boundaries can be considered. Therein lies one main advantage of our method to
simulate the motion of multiple deformable boundaries in a domain with multiple immersed rigid boundaries.

Our approach employs the immersed interface method to solve the incompressible Navier–Stokes equations
formulated in primitive variables. The singular force at the rigid boundary is determined for imposition of the
no-slip condition. At each time step the singular force is computed implicitly by solving a small, dense linear
system of equations. In this way, we can impose exactly the no-slip condition at the boundary and avoid the
need for very small timesteps. The singular force at the flexible interface is computed based on the configuration
of the interface, i.e., the interface is assumed to be governed by either surface tension, or by an elastic mem-
brane. Note that the entire singular force at the flexible interface is incorporated into the jump conditions
for pressure and the derivatives of pressure and velocity. As such, our algorithm can successfully capture all
the jumps in the solutions and their derivatives. Having computed the singular force, we next compute the jump
in pressure and jumps in the derivatives of both pressure and velocity. The jumps in the solution and its deriv-
atives are incorporated into the finite difference discretization to obtain a sharp interface resolution. Fast solv-
ers from the FISHPACK software library [1] are used to solve the resulting discrete systems of equations.

The remainder of the paper is organized as follows. In Section 2, we present the relations that must be sat-
isfied along the immersed boundary between the singular force f and the jumps in the velocity and pressure
and their derivatives. In Section 3, we describe the generalized finite difference approximations to the solution
derivatives, which incorporate the solution jumps. In Section 4, we present the numerical algorithm. In Section
5, some numerical examples are presented and finally, some conclusions and suggestions for future work are
given in Section 6.
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2. Jump conditions across the interface

We have already mentioned that when singular forces are applied on a material interface, the solutions of
the Navier–Stokes equations may be non-smooth or discontinuous across the interface. Let n and s be the unit
outward normal and tangential vectors to the interface, respectively. The respective normal and tangential
components of the force density f1 = f(s, t) Æ n and f2 = f(s, t) Æ s can be related to the jump conditions for pres-
sure and velocity as follows:
½u� ¼ 0; ½lun� ¼ �f2s; ½ug� ¼ 0; ð6Þ

½p� ¼ f1; ½pn� ¼
of2

os
; ½pg� ¼

of1

os
; ð7Þ

½lugg� ¼ jf2s; ½lung� ¼ �
of2

og
s� jf2n;

½lunn� ¼ �½lugg� þ ½pn�nþ ½pg�sþ q½un�u � n: ð8Þ
The above equations were derived in [22] and here, we have used the same notation for clarity. The jump, [Æ],
denotes the difference between the value of its argument outside and inside the interface, and (n,g) are the rect-
angular coordinates associated with the directions of n and s, respectively. Here, j is the signed valued of the
curvature of the interface (i.e. we assume that n · s = k ” constant, so that n can point either towards, or out-
wards from, the center of curvature). We note that from expressions (6)–(8) the values of the jumps of the first
and second derivatives of velocity and pressure taken with respect to the (x,y) coordinates are easily obtained
by a simple coordinate transformation. For instance, we have
½ux� ¼ ½un�n1 þ ½ug�s1;

½uyy � ¼ ½unn�n2
2 þ 2½ung�n2s2 þ ½ung�s2

2;
where n = (n1,n2) and s = (s1,s2) are the Cartesian components of the normal and tangential vectors to the
interface at the point considered.
3. Generalized finite difference formulas

From Taylor series expansions, it is possible to show that if the interface cuts a grid line between two grid
points at x = a,xi 6 a < xi + 1,xi 2 X�,xi + 1 2 X+, then the following approximations hold for a piecewise
twice differentiable function v(x):
vxðxiÞ ¼
viþ1 � vi�1

2h
� 1

2h

X2

m¼0

ðhþÞm

m!
½vðmÞ� þOðh2Þ ð9Þ

vxðxiþ1Þ ¼
viþ2 � vi

2h
� 1

2h

X2

m¼0

ðh�Þm

m!
½vðmÞ� þOðh2Þ ð10Þ

vxxðxiÞ ¼
viþ1 � 2vi þ vi�1

h2
� 1

h2

X2

m¼0

ðhþÞm

m!
½vðmÞ� þOðhÞ ð11Þ

vxxðxiþ1Þ ¼
viþ2 � 2viþ1 þ vi

h2
þ 1

h2

X2

m¼0

ðh�Þm

m!
½vðmÞ� þOðhÞ ð12Þ
where v(m) denotes the mth derivative of v,vi = v (xi), h+ = xi + 1 � a, h� = xi � a and h is the mesh width in x

direction. The jumps in v and its derivatives are defined as
½vðmÞ�a ¼ lim
x!a;x2Xþ

vðmÞðxÞ � lim
x!a;x2X�

vðmÞðxÞ ð13Þ
in short, [Æ] = [Æ]a, and v(0) = v. See Weigmann and Bube [35] for detailed proofs of expressions (9)–(12). Note
that if the interface cuts a grid line between two grid points xi 2 X+ and xi + 1 2 X�, these expressions need to
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be modified by changing the sign of the second terms on the respective right-hand sides. Expressions involving
two or more interface crossings could also be derived, see for example [35].

Finally, we also require centered and backwards approximations for v(tn + 1/2). These approximations come
about when the interface crosses a grid point over the time interval considered. Thus, assuming that the inter-
face crosses a grid point at time s, we have the following approximations:

(a) centered
vðtnþ1=2Þ ¼
1
2
ðvn þ vnþ1Þ þ 1

2
½v�s þOðDtÞ; tn

6 s < tnþ1=2

1
2
ðvn þ vnþ1Þ � 1

2
½v�s þOðDtÞ; tnþ1=2

6 s < tnþ1

(
ð14Þ
(b) backwards
vðtnþ1=2Þ ¼
3
2
vn � 1

2
vn�1 � 1

2
½v�s þOðDtÞ; tn�1

6 s < tn

3
2
vn � 1

2
vn�1 þ ½v�s þOðDtÞ; tn

6 s < tnþ1=2:

(
ð15Þ
Here, [v]s denotes the jump in time of a function v(x, t) at a particular grid point and is only non zero when the
interface crosses the grid point at time s. The jump in time is defined as
½vðtÞ�s ¼ lim
t!sþ

vðtÞ � lim
t!s�

vðtÞ: ð16Þ
It is easy to see that [v]a = ±[v]s, where [Æ]a denotes spatial jump as defined in (13) and the sign depends on the
motion of the interface. In particular, we use a plus sign when the grid point moves from the inside of the
interface to the outside of the interface, i.e. from X� to X+, and a minus sign when the grid point moves from
the outside of the interface to the inside of the interface, i.e. from X+ to X�.

4. Numerical algorithm

4.1. Projection method

We employ a pressure-increment projection algorithm for the discretization of the Navier–Stokes equa-
tions. This projection algorithm is analogous to that presented in Brown et al. [5]. It leads to a second order
accuracy for both velocity and pressure provided all the spatial derivatives are approximated to second order
accuracy. The spatial discretization is carried out on a standard marker-and-cell (MAC) staggered grid similar
to that found in Kim et al. [14]. The ENO third-order upwind scheme is used for the advective terms [30]. With
the MAC mesh, the pressure field is defined at the cell center where the continuity equation is enforced. The
velocity fields u and v are defined at the vertical edges and horizontal edges of a cell, respectively. One advan-
tage of the MAC mesh is that boundary conditions for pressure are not required explicitly. On the other hand,
the use of a non-staggered grids introduces some complications. For instance, some of the velocity compo-
nents are not defined on the boundaries of the domain.

The pressure-increment procedure for problems with immersed interfaces is the same as that for non-inter-
face problems. For problems with immersed interface, however, the discretization of the Navier–Stokes equa-
tions at those grid points near the interface needs to be modified to account for the jump conditions across the
interface. Below, we review the pressure-increment method for the case of immersed interfaces. Given the
velocity un, and the pressure pn� 1/2, we compute the velocity un + 1 and pressure pn + 1/2 at the next time step
in three steps:

Step 1: Compute an intermediate velocity field u* by solving
u� � un

Dt
¼ �ðu � ruÞnþ

1
2 � 1

q
rpnþ1

2 þ l
q
r2unþ1

2 þ C1

u�joX ¼ unþ1
b

ð17Þ
where the advective term is extrapolated using the formula,
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ðu:ruÞnþ
1
2 ¼ 3

2
ðu � ruÞn � 1

2
ðu � ruÞn�1 þ C2 þ c1½u � ru�s; ð18Þ
the diffusion term is approximated implicitly as
r2unþ1=2 ¼ 1

2
ðr2

hu� þ r2
hunÞ þ C3 þ c2½r2

hu�s; ð19Þ
and the pressure gradient is approximated simply as
rpnþ1
2 ¼ GMACpn�1

2 þ C4 þ c3½rp�s: ð20Þ

The MAC gradient operators are defined as
ðGMAC
x pÞiþ1

2;j
¼

piþ1;j � pi;j

Dx
; ðGMAC

y pÞi;jþ1
2
¼

pi;jþ1 � pi;j

Dy
Step 2: Compute a pressure update /n + 1 by solving the Poisson equation
r2
h/

nþ1 ¼ q
DMACu�

Dt
þ C5; ð21Þ
with boundary condition
n � r/nþ1joX ¼ 0: ð22Þ

The MAC divergence operator is defined as
ðDMACuÞi;j ¼
uiþ1

2;j
� ui�1

2;j

Dx
þ

vi;jþ1
2
� vi;j�1

2

Dy
:

Step 3: Update pressure and velocity field
unþ1 ¼ u� � 1

q
DtGMAC/nþ1 þ C6 ð23Þ

pnþ1=2 ¼ pn�1=2 þ /nþ1 � l
2q
ðDMACu�Þ þ C7 ð24Þ
Here, [Æ]s denotes a jump in time and is only non zero when the interface crosses the grid point over the time
interval considered. The coefficients ci, i = 1, 2, 3 correspond to the first order corrections in time. The coef-
ficient c1 is determined from expression (15) and the coefficient c2 is determined from expression (14). The
coefficient c3 is only nonzero when the interface crosses the grid point over the time interval [tn� 1/2,
tn + 1/2], and, in such cases, has the value of 1. As mentioned before, at the interface [Æ]s = ±[Æ]a, where [Æ]a de-
notes spatial jump and the sign depends on the motion of the interface. The operator r2

h is the standard five
point central difference operator and Ci, i = 2, . . . , 7, are the spatial correction terms which are only non-zero
at the points near the interface. The correction term C1 is the correction term for the discretization of ou/ot

and is only nonzero at a particular grid point which the interface crosses over the time interval [tn, tn + 1].
In our projection method, we need to solve two Helmholtz equations for u* in (17) and one Poisson equa-

tion for /n + 1 in (21). Since the correction terms in (17) and (21) only affect the right-hand sides of the discrete
systems for the Helmholtz and Poisson equations, we can take advantage of the fast solvers from FISHPACK
[1] to solve these equations.

4.2. Correction terms

In this section, we will illustrate how to evaluate the correction terms Ci, i = 1, . . . , 7 as generated in Section
4.1. We shall define C{u} as a correction term for the quantity u. For example, from (9) we can write
CfuxðxiÞg ¼ �
1

2h
½u� þ hþ½ux� þ

ðhþÞ2

2
½uxx�

 !
: ð25Þ
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Then the correction terms C1 � C7 are evaluated as follows:
C1 ¼ �Cfutg ð26Þ

C2 ¼
3

2
Cfðu � ruÞng � 1

2
Cfðu � ruÞn�1g ð27Þ

C3 ¼
1

2
Cfr2u�g þ Cfr2ung
� �

ð28Þ

C4 ¼ Cfrpn�1
2g ð29Þ

C5 ¼ q
Cfr � u�g

Dt
� C r2pnþ1

2

n o
þ C r2pn�1

2

n o
þ c3½rp�s ð30Þ

C6 ¼ �
Dt
q

C rpnþ1
2

n o
� C rpn�1

2

n o� �
ð31Þ

C7 ¼ �
l

2q
Cfr � u�g ð32Þ
All the correction terms are included at least to first order accuracy. As discussed in [20], the overall second
order accuracy of the scheme is maintained provided only the singular points are treated with a first order
scheme. This can be intuitively understood by observing that when the mesh is refined, the area of the domain
represented by these points is reduced.

We note that the correction term C{ut} in (26) is only nonzero at the grid points crossed by the interface
between time level n and time level n + 1. Assume that the interface crosses a grid point (i, j) at time
s, tn
6 s 6 tn + 1, the correction term for ut at this point is given by
Cfutg ¼ �
1

Dt
ð½u�s þ ðtn � sÞ½ut�sÞ ð33Þ
if tn
6 s 6 tn + 1/2, and
Cfutg ¼ �
1

Dt
ð½u�s þ ðtnþ1 � sÞ½ut�sÞ ð34Þ
if tn + 1/2
6 s 6 tn + 1.

Since the velocity is continuous across the interface, we have [u]s = 0. Also, by differentiating [u] = 0 we
obtain
½ut� ¼ �½u � ru� ¼ �½ut�s: ð35Þ

In (28), (30) and (32), we use the jump conditions for un + 1 to approximate the jump conditions for u* as we
expect that u* is a good approximation for un + 1. This is one of the reasons why we have chosen to implement
the pressure-increment projection method where u* is computed to be a good approximation for un + 1. To
evaluate the correction term C{$2u*} of (28) at a point (i, j) as depicted in Fig. 2, we need to compute ½u�x �,
½u�xx� at the intersection point a and ½u�y �, ½u�yy � at b using the force strength at time level n + 1. The correction
term C{$2u*} is calculated as follows:
Cfr2u�gi;j ¼ �
½u�� þ hþ½u�x �a þ

ðhþÞ2
2
½u�xx�a

h2
�
½u�� þ k�½u�y �b þ

ðk�Þ2
2
½u�yy �b

h2
;

and $2u* is approximated at the point (i, j) as
r2u�ði; jÞ ¼
u�iþ1;j þ u�i�1;j þ u�i;jþ1 þ u�i;j�1 � 4u�i;j

h2
þ Cfr2u�gi;j þOðhÞ:
Similarly, we can compute for the other correction terms in (28)–(32).

4.3. Evaluation of singular force at the rigid boundary

Assuming that the singular force f is known at the rigid boundary, the velocity field un + 1 at all the grid
points can be computed via the projection method as discussed in Section 4.1. In our method, we use a set



Fig. 2. Interface and mesh geometry near the grid point (i, j).
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of control points to represent the rigid boundary. The velocity at the control points, Uk, is interpolated from
the velocity at the grid points. Thus, we can write
Uk ¼ UðXkÞ ¼ Bðunþ1Þ; ð36Þ

where B is the bilinear interpolation operator which includes the appropriate correction terms required to
guarantee second order accuracy when the derivatives of the velocity are discontinuous. The explicit form
of Uk can be found in Appendix A.

In summary, the equations that need to be solved in order to calculate un + 1 and Uk, can be written sym-
bolically as,
Eq: ð17Þ ! Hu� ¼ C þ B1f ;

Eq: ð21Þ ! L/nþ1 ¼ Du� þ B2f ;

Eq: ð23Þ ! unþ1 ¼ u� � G/nþ1 þ B3f ;

Eq: ð36Þ ! Uk ¼Munþ1 þ B4f :
Eliminating u*, /n + 1 and un + 1 from the above equations, we can compute the velocity Uk at the control points
as follows:
Uk ¼MðH�1C � GL�1DH�1CÞ þ ðMðH�1B1 � GL�1DH�1B1 � GL�1B2 þ B3Þ þ B4Þf : ð37Þ

For convenience, we can write (37) as
Uk ¼ U0
k þ Af ; ð38Þ
where U0
k is simply the velocity at the control points obtained by solving Eqs. (17), (21), (23) and (36) with

f = 0, given un and pn� 1/2. A is a 2Nb · 2Nb matrix, where Nb is the number of control points. The vector
Af is the velocity at the control points obtained by solving the following equations:
u�f
Dt
¼ l

2q
r2u�f ; u�f joX ¼ 0; ð39Þ

r2/nþ1
f ¼ q

r � u�f
Dt

; n � r/nþ1
f joX ¼ 0; ð40Þ
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unþ1
f ¼ u�f �

Dt
q
r/nþ1

f ; ð41Þ

Af ¼ Bðunþ1
f Þ ð42Þ
with f being the singular force at the immersed boundary.
Eq. (38) can be used to determine the singular force if we know the prescribed velocity Up at the immersed

boundary. Thus, the singular force at the control points can be computed by solving
Af ¼ Up �U0
k : ð43Þ
In this way, the singular force is solved to impose exactly the no-slip boundary condition at the interface.
In addition, since the singular force is calculated implicitly, the timestep used in our algorithm is usually
much larger than that used in other methods with explicit forcing formulations [13,15,31]. Note that the
matrix A depends on the location of the interface and the timestep Dt. For static geometry, we will have
the same matrix A at every timestep if we use the same Dt throughout. Therefore, the matrix A is com-
puted once and is factorized and stored. In order to compute the coefficients of A we solve Eqs. (39)–
(42) for 2Nb times, i.e. once for each column. Each time, the force strength f is set to zero except for
the entry corresponding to the column we want to calculate, which is set to one. Once the matrix A
has been calculated, only the right hand side, Up �U0

k , needs to be computed at each timestep. The result-
ing small system of Eq. (43) is then solved at each timestep for the singular force f via back substitution.
Finally, we solve Eqs. (17)–(24) to obtain un + 1 and pn + 1/2. It is important to note that the matrix A, for a
closed immersed boundary, is singular. This happens because the pressure inside the closed boundary is not
uniquely determined. We use the singular value decomposition (SVD) method to solve the singular system
of Eq. (43).

For moving geometry, the matrix A must be regenerated at every timestep. The computational cost
associated with the procedure outlined above would be prohibitive. To avoid generating A, we employ
GMRES method and solve (43) iteratively. Each iteration of GMRES method requires a matrix–vector
product which can be found by solving (39)–(42). In each matrix–vector product, we have to solve two
Helmholtz Eq. (39) and a Poisson Eq. (40). Therefore, our algorithm for solving the problems with mov-
ing boundary is only effective if the GMRES method takes a few iterations to converge. For a closed
immersed boundary, the linear system of Eq. (43) is singular. A version of GMRES method for singular
linear system of equations is required. We employed the GMRES method presented in [6] which used the
incremental condition estimation (ICE) [3] to monitor the conditioning of the upper Hessenberg
matrix.
4.4. Numerical implementation

4.4.1. Rigid boundary

In this section, we describe a basic implementation of our algorithm for the Navier–Stokes equations with
immersed rigid boundaries. We describe our approach for the problem of the flow past a circular cylinder. To
start our procedure we use a set of control points to represent the rigid boundary and compute the coefficient
matrix as mentioned in the previous section. For the cylinder problem, this matrix is singular. We factorize the
coefficient matrix using singular value decomposition as,
A ¼ URVT; ð44Þ

where u = [u1, . . . ,uN] and V = [v1, . . . ,vN] are orthogonal matrices and R = diag(r1, . . . ,rN) is a diagonal ma-
trix whose elements are the singular values of the original matrix such that
r1 P r2 P . . . P rN P 0:
Since A is singular it has at least one singular value equals to zero. We store U, V and R for solving the singular
force at every timestep. At each timestep, given the velocity field un and pressure field pn� 1/2, our algorithm for
finding un + 1,pn + 1/2 and the singular force to impose the no-slip condition at the rigid boundary can be sum-
marized as follows:
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Step 1: Compute the right-hand side of (43) by calculating U0
k .
� Set f = 0. Solve (17), (21) and (23) for the velocity at all the grid points.
� Interpolate the velocity at the control points U0

k as in (36).
� Compute the right-hand side vector b ¼ Up �U0

k .
Step 2: Compute the singular force by solving (43) using the SVD method.

� If A is nonsingular, then the force f can be written in terms of the SVD as

f ¼
XN

i¼1

uT
i b

ri
vi:

� If A is singular and has k singular values due to the presence of k closed rigid boundary loops, then,
the force f can be computed as,

f ¼
XN�k

i¼1

uT
i b

ri
vi: ð45Þ
Step 3: Compute un + 1 and pn + 1/2 using the projection method.For moving geometry, we still have the same
algorithm except that the GMRES solver is applied to solve (43) iteratively at each time step. Thus,
we do not need to form the coefficient matrix explicitly.

4.4.2. Motion of flexible boundaries in the presence of rigid boundaries

We now turn our attention to the implementation of the immersed interface method for the incompressible
Navier–Stokes equations in general domains involving immersed flexible and rigid boundaries. We consider a
generalized force exerted by interface on the fluid of the form
f ðs; tÞ ¼ o

os
ðT ðs; tÞsðs; tÞÞ þ r

o
2X

os2
; ð46Þ
where T(s, t) is defined as
T ðs; tÞ ¼ T 0

oXðs; tÞ
os0

����
����� 1

� �
ð47Þ
and s(s, t) is the unit tangential vector to the interface,
sðs; tÞ ¼ oX

os

	
oX

os

����
����: ð48Þ
Here, X(s, t) is the arc-length parametrization of the interface and s and s0 are the arc-lengths measured along
the current and undeformed configuration of the membrane, respectively. The scalar T0 is the stiffness con-
stant which describes the elastic property of the flexible boundary. The scalar r is the surface tension constant.
In the case of a flexible boundary governed by surface tension T0 will be zero, and in the case of an elastic
membrane r will be zero. The location of the flexible boundaries is advanced in time in an implicit manner,
Xnþ1 ¼ Xn þ 1

2
DtðunðXnÞ þ unþ1ðXnþ1ÞÞ: ð49Þ
The BFGS method [32] which is a quasi-Newton method is employed to solve the non-linear system of Eq.
(49) iteratively to calculate the location of the flexible boundaries. For more details on the immersed interface
method for flexible interfaces, see [16,17,19]. In each iteration of the BFGS method, we need to solve the sys-
tem of Eq. (43) for the singular force at the rigid boundaries to enforce the no-slip boundary conditions. This
is necessary because the velocity field and pressure field are updated at every iterations of the BFGS method.

In summary, given the location of the flexible boundaries, Xn, the singular force at the rigid boundaries, f n,
the velocity field, un, and the pressure field, pn� 1/2, the process of computing the new velocity field un + 1 that
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satisfies the no-slip boundary conditions at the rigid boundaries, pressure field pn + 1/2 and the location of the
flexible boundaries Xn + 1 can be described as follows:

Step 1: Set k := 0, set the inverse Jacobian B0 = I and make an initial guess for Xn + 1, i.e. X(0) as
X ð0Þ ¼ 2Xn � Xn�1:
Step 2:

� Compute the force strength at the flexible boundaries using expression (46). Interpolate the force

strength using cubic splines.
� Compute the force strength at the rigid boundaries to enforce the no-slip conditions. That is, calculate

the right-hand side vector Up �U0
k of (43). Then solve for the small system of Eq. (43) to obtain the

singular force at the rigid boundaries.
Step 3:

� Employ the projection method as described in Section 4.1 to update the velocity un + 1 and pressure

field pn + 1/2.
� Compute the velocity at the control points, un + 1(X(k)), by interpolating from the velocity at the sur-

rounding grid points.
Step 4:

� Evaluate

gðX ðkÞÞ ¼ X ðkÞ � Xn � 1

2
DtðunðXnÞ þ unþ1ðX ðkÞÞÞ:

� If ig(k)i < � then Xn + 1 = X(k) and stop the iteration. Otherwise, update X(k + 1) and the inverse Jaco-
bian matrix Bk + 1 using BFGS algorithm. Set k := k + 1 and go to step 2.
Our implementation prohibits the intersection between two flexible boundaries or between a flexible boundary
and rigid boundaries. This is enforced by defining a contact threshold say to be a distance of 1.5h, where h is
the mesh size. If a control point of a flexible boundary lies within a contact threshold of other flexible bound-
aries or rigid boundaries, we introduce a repulsive force into the total singular force at the flexible boundary.
This repulsive force is applied in the outward normal direction to the rigid boundaries or other flexible bound-
aries. If the flexible membrane represents a particle with surface potential, the repulsive force can be under-
stood as the electrostatic repulsion between two colloidal particles or between a particle and the rigid
boundaries. In [2], the velocities of interfacial points that lie within a contact threshold of other membranes
or rigid boundaries are adjusted. However, these velocity adjustments may alter the volume of the bodies. A
repulsive force is suggested and introduced into the total surface force thereby obviating the need of the veloc-
ity adjustment. In our algorithm, the expression for the repulsive force at a control point is
jf RðrÞj ¼
C 1� r

1:5h

� �n
 �
; r 6 1:5h;

0; otherwise;

(
ð50Þ
where r is a separation distance between a flexible membrane and other flexible membranes or rigid bound-
aries, C is a positive constant and n is a power index. It can be construed that the values of C and n are func-
tions of the properties of the surface material but this topic is outside the scope of the present study. In our
numerical experiments, a typical n is chosen within 2–4 and the constant C is chosen to have the same order of
magnitude as the current force at the control point under consideration. In order to avoid a kink which may
occur when adding the repulsive force to the singular force at the membrane, we distribute the repulsive force
to the nearby control points of the same membrane using a Gaussian normal representation of the discrete
delta function. Typically we distribute the repulsive force to five control points including the control point
under consideration and its four closest neighbors on the same membrane.
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5. Numerical results

In this section, we present the numerical results for several problems involving rigid boundaries and both
rigid and flexible boundaries.

5.1. Rotational flow

In this problem, the interface is a circle with radius r = 0.3 embedded in a square domain [�1,1] · [�1,1].
We prescribe the interface to rotate with angular velocity x = 2. We set q = 1, l = 0.02 and consider the solu-
tion at t = 10. The velocity field is shown in Fig. 3. We carried out a grid refinement analysis, using a refer-
enced grid of 512 · 512, to determine the order of convergence of the algorithm. The errors in the velocity,
E(u) and the errors in the pressure, E(p) are measured in both the maximum norm and the second norm.
The results in Table 1 show that the velocity is second order accurate and the pressure is nearly second order
accurate.

5.2. Flow past a circular cylinder

In this example, we simulate an unsteady flow past a circular cylinder immersed in a rectangular domain
X = [0,3] · [0,1.5]. We use this problem as another benchmark test for our algorithm. The cylinder has a
diameter d = 0.1 and its center is located at (1.6, 0.75). The freestream velocity is set to unity, U1 = 1 and
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Fig. 3. Velocity field at time t = 10 with a 64 · 64 grid, l = 0.02, Dt = Dx/4. The immersed boundary rotates with angular velocity x = 2.
(a) Plot of the x component of velocity field. (b) Plot of the velocity field.

Table 1
Grid refinement analysis for the rotational flow problem with l = 0.02, Dt = Dx/4, at t = 10

N Nb iE(u) i1 Order iE(u) i2 Order

64 40 1.8001 · 10�3 1.6528 · 10�4

128 80 5.5145 · 10�4 1.71 3.9239 · 10�5 2.08
256 160 1.2755 · 10�4 2.11 1.0021 · 10�5 1.97

iE(p)i1 iE(p)i2

64 40 6.6995 · 10�3 1.6014 · 10�3

128 80 1.5951 · 10�3 2.07 4.7510 · 10�4 1.75
256 160 5.7996 · 10�4 1.46 1.5854 · 10�4 1.58
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simulations are carried out at Reynolds number, (Re = qU1d/l) of 20, 40, 80, 100, 200 and 300 on a 512 · 256
computational mesh. We use 40 points to represent the circular cylinder. At the inflow boundary we specify
the velocity corresponding to the freestream velocity, and a homogeneous Neumann boundary condition is
applied at the top, bottom and exit boundaries. For all these simulations, we use the free stream velocity
as the initial velocity and the initial pressure is set to zero. Then, the force at the cylinder interface is deter-
mined by the no-slip condition on the cylinder. The resulting solution inside the cylinder corresponds to zero
velocity and a constant pressure which is an arbitrary value. After the first timestep, the flow evolves naturally
and satisfies the no-slip boundary condition. Once the velocity field and pressure field have been computed, the
drag and lift coefficients and the Strouhal number can be computed from the force at the control points.

The drag coefficient is defined as
CD ¼
D

1
2
qU 2

1d
: ð51Þ
The drag can be computed from the force along the cylinder interface as
D ¼ �
Z

C
fx ds; ð52Þ
where fx is the x component of the singular force. The lift coefficient is defined as
CL ¼
L

1
2
qU 2

1d
: ð53Þ
The lift can be computed from the force along the cylinder interface as
L ¼ �
Z

C
fy ds; ð54Þ
where fy is the y component of the singular force. The Strouhal number is defined as
St ¼ fd
U1

; ð55Þ
where f is the vortex shedding frequency; it is one of the key quantities that characterizes the vortex shedding
process. This coefficient can be obtained using the Fourier Transform of the periodic variation of the lift coef-
ficient [31]. Finally, the dimensionless time is defined as
T ¼ U1t
d

: ð56Þ
Fig. 4 shows the streamlines for Re = 20 and Re = 40. For these low Reynolds numbers, the wake formed be-
hind the cylinder gradually attains a steady symmetric state. Once the flow has reached the steady state, the
drag coefficients, the length of the recirculation zone and the angle of separation are calculated and are com-
pared with other established results in Table 2. The results obtained by our method are compared to the
numerical simulations [7,9,12,29,37] as well as experimental results [8,33]. It is found that our results are in
reasonably good agreement with other numerical simulations and experimental results. For Re = 20 our drag
coefficient is very closed to other numerical results but it is about 8% lower than the experimental measure-
ment of Tritton [33]. For Re = 40 our drag coefficient is about 5% higher than the experimentally determined
value [33]. Fig. 5 shows the plots of the pressure field for Re = 20 and Re = 40. The pressure patterns are sym-
metric about the streamwise axis.

Between Re = 40 and Re = 50 we expect to see a transition to instability. Fig. 6 shows that our algorithm is
able to detect the onset of an instability in the flow at Re = 50. It has been reported that the wake behind the
cylinder first becomes unstable at a critical Reynolds number of about Re = 46 ± 1 [37]. Above this Reynolds
number the cylinder wake instability appears and grows in time and eventually leads to Karman vortex shed-
ding. This behavior is shown in the present numerical simulations for Re = 80, 100, 200 and 300. Note that in
all these simulations we do not need to artificially perturb the flow field to initiate the unsteady behavior.
Fig. 7 shows the pressure fields at Re = 100, 200 and 300. The instabilities and vortex shedding can be
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Fig. 4. Streamlines for Re = 20 and Re = 40.

Table 2
Length of the recirculation zone (L/d), angle of separation (h) and drag coefficient (CD) for Re = 20 and Re = 40

Re = 20 Re = 40

L/d h CD L/d h CD

Tritton [33] – – 2.22 – – 1.48
Coutanceau and Bouard [8] 0.73 42.3� – 1.89 52.8� –
Fornberg [12] 0.91 – 2.00 2.24 – 1.50
Dennis and Chang [9] 0.94 43.7� 2.05 2.35 53.8� 1.52
Calhoun [7] 0.91 45.5� 2.19 2.18 54.2� 1.62
Russell and Wang [29] 0.94 43.3� 2.13 2.29 53.1� 1.60
Ye et al. [37] 0.92 – 2.03 2.27 – 1.52
Present 0.93 43.9� 2.05 2.22 53.6� 1.56
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visualized from this figure. In Tables 3 and 4, the drag and lift coefficients at Re = 100 and Re = 200 are com-
pared to other numerical simulations. For Re = 100, the mean drag obtained by our algorithm is slightly
greater than that computed by other researchers [4,7,24]. Our drag coefficient differs from that reported by
1–3%. For Re = 200, our drag coefficient lies within the range of results reported in [4,7,24,29]. Our value
is about 15% higher than that in Calhoun [7] and 4% lower than the value obtained by Braza et al. [4]. In Table
4 it can be seen that the lift coefficient calculated by our method for Re = 100 is well within the range of the
values obtained by other researchers. However our lift coefficient for Re = 200 is lower than their values. Figs.
8 and 9 show the variations in time for the drag and lift coefficients, respectively. These figures depict the
development of the vortex shedding to a periodic state with time at Re = 100 and Re = 200. The vortex shed-
ding Strouhal number is computed for Re = 80, 100, 200 and 300 and is compared with other established
results in Table 5. Our computed Strouhal number obtained at Re = 80 comes out to be 0.15 which compares
very well with the values obtained from experiment [36] and from numerical simulation [37]. At Re = 100 and
Re = 200, our Strouhal numbers are in good agreement with those given in [7,24,29] and differ from the exper-



Fig. 5. Pressure fields for Re = 20 and Re = 40.
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imental results [36] by 1.8% and 1%, respectively. At Re = 300, our computed Strouhal number compares very
well with the value obtained from experiment [36].

5.3. Flow past several cylinders

In this example, we consider an unsteady flow past several cylinders immersed in a rectangular domain
X = [0,3] · [0, 1.5]. This example shows the ability of our algorithm to handle multiple rigid boundaries.
The simulation has been performed for three cylinders immersed in the flow at Re = 100. All the cylinders
have the same diameter of 0.1 and their centers are at (1.0,0.75), (1.2,0.65) and (1.3,0.85). We use 20 control
points to represent each of the circular cylinders. The computational grid is 512 · 256 and the same boundary
conditions as those for the flow past a single cylinder problem are applied. Figs. 10 and 11 show the stream-



Fig. 7. Pressure fields for Re = 100, Re = 200 and Re = 300.

Table 3
Drag coefficients for Re = 100 and Re = 200

CD Re = 100 Re = 200

Braza et al. [4] 1.36 ± 0.015 1.40 ± 0.050
Liu et al. [24] 1.35 ± 0.012 1.31 ± 0.049
Calhoun [7] 1.33 ± 0.014 1.17 ± 0.058
Russell et al. [29] 1.38 ± 0.007 1.29 ± 0.022
Present 1.37 ± 0.009 1.34 ± 0.030

Table 4
Lift coefficients for Re = 100 and Re = 200

CL Re = 100 Re = 200

Braza et al. [4] ±0.250 ±0.75
Liu et al. [24] ±0.339 ±0.69
Calhoun [7] ±0.298 ±0.67
Russell et al. [29] ±0.300 ±0.50
Present ±0.323 ±0.43
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Table 5
Strouhal numbers for Re = 80, 100, 200 and 300

St Re = 80 Re = 100 Re = 200 Re = 300

Ye et al. [37] 0.15 – – 0.210
Williamson [36] 0.15 0.163 0.185 0.203
Liu et al. [24] – 0.164 0.192 –
Calhoun [7] – 0.175 0.202 –
Russell et al. [29] – 0.169 0.195 –
Present 0.15 0.160 0.187 0.200
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lines and pressure contours for Re = 100 at different time levels. The vortex shedding is not symmetric since
the cylinders are not placed symmetrically.

5.4. Flow past a moving circular cylinder

In this example, we simulate the flow past a moving cylinder which moves to the left at a velocity of
U1 = �1. The computational domain is [0,6] · [�1.5,1.5]. The cylinder has a radius r = 0.1 and its center
is initially located at (5.5, 0.0). At the left boundary we set the velocity to zero, and a homogeneous Neumann
boundary condition is applied at the top, bottom and right boundaries. In the frame of reference that is
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attached to the moving cylinder, these boundary conditions are the same as those used for the stationary cir-
cular cylinder problem. The simulation has been performed for Re = 40.

In this example, to solve for the singular force at the moving boundary, we do not generate a system of
equations explicitly. Instead, we solve for the force at the boundary iteratively via GMRES algorithm. Since
the system of equations is singular, the convergence rate of the GMRES algorithm is relatively slower than for
non-singular case. However, we can use the incremental condition estimation (ICE) [3] to monitor the condi-
tioning of the upper Hessenberg matrix and stop the iteration when the conditioner number increases rapidly
or when the residual does not change much. Numerical experiments show that the residual is reasonably small
and decreases very little after 2–5 iterations. Hence, we can typically stop the GMRES iterative process after
2–5 iterations to reduce numerical effort.

Fig. 12 shows the streamlines plot for Re = 40 in the frame of reference attached to the moving cylinder
when the wake behind the cylinder appears to be fully developed. Fig. 13 shows the streamlines plot at the



Fig. 11. Flow past three cylinders. Pressure contours for Re = 100 at different times.
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Summary results for moving cylinder atRe= 40, compared against stationary cylinder at

Re= 40 C D L / d
M o v i n g c y l i n d e r 1
S t a t i o n a r y c y l i n d e r

00 . 511 . 5- 0 . 4- 0 . 3- 0 . 2- 0 . 100 . 1F i g . 1 4

1 2 8 D . V .
same time level. Table 6 shows the results of the drag coefficient and the length of the recirculation zone at
Re = 40. These results are compared to those obtained for the stationary cylinder. We can see that the length
of the recirculation zone is in reasonable agreement with that obtained for the stationary cylinder. The drag
coefficient is about 6.5% higher than that obtained for the stationary cylinder.

5.5. Motion of elastic membranes in irregular domains

5.5.1. Grooved channel flow with an immersed elastic membrane

This example considers the Poiseuille flow between two walls, one of which has a groove perpendicular to
the streamwise direction. An elastic membrane is immersed in the fluid inside the groove. Depending on the
flow, the elastic membrane rotates inside the groove or the flow can move it out of the groove depending on
some parameters such as the initial location of the elastic membrane, the flow rate, the size of the groove and
the stiffness of the membrane. In the numerical simulation, the gap between the walls is 0.2, the depth and the
width of the groove are denoted by D and W, respectively. The velocity profile at the inflow boundary is
parabolic with maximum velocity Umax, the density is set equal to one, and a viscosity is l = 0.02. Fig. 14
illustrates the geometry of the grooved channel and the initial position of the membrane inside the groove.
A homogeneous Neumann boundary condition for velocity is applied at the right boundary. The velocity is
set to zero at the top and bottom boundaries. The no-slip boundary condition at the immersed rigid boundary
is enforced by imposing an appropriate singular force at the rigid boundary.
steady state
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In all the simulations presented in this example, a computational domain of [0, 1.5] · [�0.4,0.1], a 384 · 128
grid and a circular membrane with diameter of 0.15 have been used. This membrane has initially been
pre-stretched from the undeformed state with a diameter of 0.12. We first consider the elastic membrane whose
center is located at (0.675, �0.18) inside the groove with D = 0.2 and W = 0.25. A stiffness constant for the
membrane T0 of 1.5, a surface tension constant r of 1.0 and a far-field maximum velocity Umax of 1.0 were
specified. Fig. 15 shows the positions of the elastic membrane and velocity fields at different time levels.
Because of the high relative location of the membrane inside the groove, the flow induces the membrane to
move out of the groove. However, if the membrane is located a bit lower inside the groove, i.e. the center
of the membrane is (0.675,�0.2), the membrane only rotates inside the groove under the same imposed exter-
nal flow condition. Fig. 16 shows the positions of the elastic membrane inside the groove and velocity fields at
different times. A solid circle on the interface corresponds to a material point and shows the rotation of the
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membrane. In these simulations, the timestep Dt of h/7.5 has been used. The computational time was about
1.5 h and 3 h for the first and the second simulations, respectively. Note that all the simulations presented in
this paper were performed on an IBM Pentium IV 2.4 GHz.

Next, we keep the location of the membrane center at (0.675, �0.2) and increase the flow rate by increasing
the maximum far-field velocity to Umax = 5. Again, the fluid flow can induce and cause the membrane to move
out of the groove. Fig. 17 shows the deformation of the membrane under the high flow rate condition. Because
of the high flow rate and the low stiffness constant of the membrane, there is significant deformation of the
membrane as it tries to climb out of the groove.

Under the same flow conditions and the same properties of the membrane, one may be able to keep the
membrane inside the groove by reducing the width of the groove. Fig. 18 shows the rotation of the membrane
inside the smaller groove with the width W of 0.2.

We note that while some approaches generate spurious currents in the vicinity of tension bearing interface,
these are not observed with the current method. These currents are unphysical flows which result from incon-
sistent modelling of the surface tension and the pressure terms [27]. The present immersed interface method
ensures the exact balance between pressure and surface tension locally in the discretized equations. This
appears to be the reason why spurious currents are not observed with the present method.
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5.5.2. Flow in a constriction with immersed elastic membranes

This problem considers the motion of one or more membranes in a domain with a constriction. Fig. 19
illustrates the geometry of the constriction and the initial position of a single membrane in front of the con-
striction. In all the simulations presented in this example, a computational domain of [0,1.5] · [�0.25,0.25], a
384 · 128 grid, a fluid density of unity, a fluid viscosity of 0.02 and a surface tension constant of r = 0 have
been used. A parabolic velocity profile with Umax = 1 is specified for the velocity at the inflow boundary. A
homogeneous Neumann boundary condition for velocity is applied at the right boundary. The velocity is
set to zero at the top and bottom boundaries. The no-slip boundary condition at the immersed rigid bound-
aries is enforced by imposing appropriate singular forces at the rigid boundaries.
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For the simulations of a single membrane squeezing through a constriction, an initial diameter of 0.26, a
stiffness constant, T0, of 2.0 are specified to the circular membrane whose center is located at (0.37, 0.0). The
elastic membrane is pre-stretched from the undeformed state with a diameter of 0.12. Two aspect ratios (ratio
of the membrane size to the constriction size) of 1.3 and 1.88 have been considered to investigate the motion of
a single membrane through the constriction. We use 60 control points to represent the elastic membrane. We
use 235 and 247 markers to represent the rigid boundaries of the constriction with aspect ratios of 1.3 and
1.88, respectively. Fig. 20 shows the locations of the elastic membrane and the corresponding velocity fields
at different times pertaining to the aspect ratio of 1.3. The positions of the membrane squeezing through
the smaller constriction are shown in Fig. 21. Fig. 21 shows that it takes a longer time for the membrane
to squeeze through the smaller constriction.

We also perform a simulation for the motion of three membranes flowing through a constriction with an
aspect ratio of 0.72. The three membranes have the same stiffness constant T0 of 4 and the diameter of 0.1. The
geometry of the computational domain and the initial position of the membranes are illustrated in Fig. 22. The
simulation has been performed at Re = 5. The Reynolds number is calculated based on the initial membrane
diameter and the maximum far-field velocity Umax. Fig. 23 shows the positions of the membranes and the cor-
responding velocity fields at different times. In the region of strong velocity shear, the membrane surfaces
depict more distortion.
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6. Conclusions

In this paper, an immersed interface algorithm is developed for solving the Navier–Stokes equations in
complex general domains. It is shown that the proposed method is capable of handling viscous, incompressible
flow problems involving both rigid and flexible boundaries. A numerical simulation has been performed for
the rotational flow problem and second order accuracy has been demonstrated through this example. Numer-
ical simulations have also been performed to reproduce some results for the flow past a stationary circular
cylinder problem as a benchmark test for our method when dealing with rigid boundaries. It is found that
our numerical results are in good agreement with other numerical and experimental results for both the steady
Velocity field at t = 0.500.5Velocity field at t = 7780
es. Simulations have been performed forRe= 5, stiffnessComputational domain for studying the interaction between three elastic membranes at the entrance to a constriction.Le et al. / Journal of Computational Physics 220 (2006) 109–138135
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and unsteady regimes. Moving rigid boundaries are also considered to show the flexibility of our algorithm.
Finally, simulations were also performed for problems involving the motion of a single membrane in a
grooved channel and single and multiple membranes moving through a constriction.

The presented algorithm can be extended to three dimensions in a rather straightforward manner. In this
case the interface would be represented by a surface triangulation and the control point would be the nodes of
the triangulation. An issue that needs to be addressed further is the computation of the interaction forces when
two membranes approach each other or when a membrane comes close to the rigid boundary. Since one of the
main motivations of the current work is the motion of deformable particles in biological flows, the colloidal
interaction force between two particles or between a particle with rigid boundaries is likely a combination of
Van de Waals attractive force, electrostatic repulsive force and short-ranged Born repulsive force [28].

Appendix A. Modified bilinear interpolation

In this appendix, we derive a bilinear interpolation formula to compute the velocity at a control point. The
velocity at the control points, Uk, is interpolated from the velocity at the nearby Cartesian grid points. Thus,
we can write
Fig. 2
interpo
Uk ¼ UðXkÞ ¼ BðuÞ; ð57Þ

where B is the bilinear interpolation operator which includes the appropriate correction terms which are re-
quired to guarantee second order accuracy when the derivatives of the velocity are discontinuous. In Fig. 24,
the velocity at the control point Xk is interpolated from the velocity at the four neighboring grid points as
follows:
Uk ¼ ð1� nÞð1� gÞu1 þ C1 þ nð1� gÞu2 þ C2 þ ngu3 þ C3 þ ð1� nÞgu4 þ C4 ð58Þ

where C1, . . . ,C4 are correction terms, n ¼ X�x1

h , g ¼ Y�y1

h and h is the grid size. Jump conditions [ux] and [uy] are
required at the control point to compute the correction terms. The correction terms can be derived using Tay-
lor series expansion and have the following forms:
C1 ¼
hð1� nÞð1� gÞðn½ux� þ g½uy �Þ; x1 2 Xþ;

0; x1 2 X�;

�
ð59Þ

C2 ¼
�hnð1� gÞðð1� nÞ½ux� � g½uy �Þ; x2 2 Xþ;

0; x2 2 X�;

�
ð60Þ
4. Velocity at a control point is interpolated from the velocity at the four neighboring grid points using a modified bilinear
lation.
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C3 ¼
�hngðð1� nÞ½ux� þ ð1� gÞ½uy �Þ; x3 2 Xþ;

0; x3 2 X�;

�
ð61Þ

C4 ¼
hð1� nÞgðn½ux� � ð1� gÞ½uy �Þ; x4 2 Xþ;

0; x4 2 X�:

�
ð62Þ
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